Exercise 33

Find equations of the tangent line and normal line to the given curve at the specified point.

$$
y=2 x e^{x}, \quad(0,0)
$$

Solution

Start by finding the slope of y at $x=0$. Evaluate the derivative using the product rule.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(2 x e^{x}\right) \\
& =\left[\frac{d}{d x}(2 x)\right]\left(e^{x}\right)+(2 x)\left[\frac{d}{d x}\left(e^{x}\right)\right] \\
& =(2)\left(e^{x}\right)+(2 x)\left(e^{x}\right) \\
& =2(1+x) e^{x}
\end{aligned}
$$

Evaluate it at $x=0$.

$$
y^{\prime}(0)=2
$$

Therefore, the equation of the tangent line with slope 2 and the equation of the normal line with slope $-1 / 2$ that go through $(0,0)$ are respectively

$$
y-0=2(x-0) \quad \text { and } \quad y-0=-\frac{1}{2}(x-0)
$$

$$
\begin{aligned}
& y=2 x e^{x} \\
& -0=2(x-0) \\
& 0=-\frac{1}{2}(x-0)
\end{aligned}
$$

